
1

OPTIMIZATION OF PUMP AND TREAT SYSTEMS:  AUTOMATED GROUNDWATER MODELING
OPTIMIZATION

David J. Becker
Geologist, US Army Corps of Engineers

Hazardous, Toxic, and Radioactive Waste Center of Expertise
 12565 W. Center Rd. Omaha, NE  68144-3869

Phone: (402) 697-2655, Email: dave.j.becker@usace.army.mil
Barbara Minsker, Ph.D.

Associate Professor and Consultant
Environmental Management and Systems Analysis

2511 Southwood Drive
Champaign, IL 61821

Phone: 217-417-4198, Email: minskerconsulting@insightbb.com

Coauthors:
Robert Greenwald, GeoTrans, Inc.

Karla Harre, US Naval Facilities Engineering Service Center
Dr. Richard Peralta, Utah State University

Kathy Yager, US Environmental Protection Agency Technology Innovation Office
Laura Yeh, US Naval Facilities Engineering Service Center

Yan Zhang, GeoTrans, Inc.
Dr. Chunmiao Zheng, University of Alabama

Background

With the recent focus on lowering the operating costs of environmental remediation systems, including
groundwater pump and treat systems, there has been increased interest in algorithmic approaches to
optimization.  The Department of Defense and United States Environmental Protection Agency (USEPA)
sponsored a study to evaluate the benefits and utility of transport optimization algorithms, operable on desktop
computers, against trial and error approaches for pump and treat system design.  This follows upon an earlier
USEPA effort to determine the efficacy of a hydraulic optimization algorithm designed for MODFLOW.
Mathematical optimization problems are formulated to minimize an objective and satisfy a set of constraints.
Hydraulic optimization typically applies to plume containment problems, while transport optimization typically
applies to problems associated with reduction of contaminant concentrations or contaminant mass.  Transport
optimization can consider life-cycle costs and cleanup time as components of the objective or as part of the
constraints.  Application of transport optimization could potentially reduce the costs for pump and treat systems by
millions of dollars over the life of the projects, as this study has demonstrated.  Note that these types of
optimization tools have previously been (and currently are being) applied to Air Force projects.

Methods

In this project, various criteria were applied to screen DoD facilities appropriate for demonstrating pump-and-treat
transport optimization algorithms, with three systems selected at the Umatilla Army Depot, Oregon, the Tooele
Army Depot, Utah, and the former Blaine Naval Ammunition Depot, Nebraska.  For each facility selected, the
existing MT3D transport model was assumed to be adequate for remedial design purposes.  Administrative
objectives and constraints such as desirable points of compliance, permissible well locations, pumping rate
limitations, and new well costs were established with agreement from the facility personnel and contractors, and
set forth as mathematical formulations.  Three optimization formulations were developed for each pump and treat
system for optimization modeling by two modeling groups applying transport optimization algorithms and a third
group applying trial and error to serve as a control. The concept of management periods was used to allow
pumping strategies and locations to change at the end of each 3 to 5 year period, when the performance of the
pump and treat systems would typically be reviewed.
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Robert Greenwald and Yan Zhang at GeoTrans, Inc applied the trial-and-error approach. The optimization
algorithm applications were conducted by Dr. Richard Peralta and others at Utah State University and Dr.
Chunmiao Zheng and others at the University of Alabama.  They used their own independently developed
simulation-optimization software for this study. Dr. Zheng used Modular Groundwater Optimizer (MGO), which is
implemented with genetic algorithm (GA), simulated annealing (SA), and tabu search (TS) optimization
algorithms. Dr. Peralta used the SOMO3 Module of SOMOS, which is implemented with genetic algorithm (GA)
and simulated annealing (SA) optimization algorithms, as well as artificial neural networks (ANN) for
approximating simulation models.

For each formulation, an initial solution was established by the trial and error modeling group to ensure that each
had at least one feasible solution.  This was followed by a four-month computational period for each group at
each site.  During this four-month period, the three groups were prohibited from discussing their findings with the
others.  In addition to the three problems posed for each facility, the modelers were provided the opportunity to
propose and solve new problems with modified constraints that they felt might be of interest to the facility.  Efforts
were undertaken to reduce the run times of the transport model for each site while maintaining the desired
accuracy.

Results

This project clearly demonstrated that mathematical optimization is capable of identifying substantially improved
solutions to actual field-scale problems.  The two modeling groups applying the optimization algorithms were able
to evaluate far more alternatives than the trial and error modeling group and found improved solutions.  The
solutions found by the algorithms for these three “real-world” sites were 5% to 50% better than those obtained
using trial-&-error (measured using optimal objective function values), with an average improvement of about
20%. For Blaine, which has substantial costs, these results would give cost savings of up to $10M over the 30-
year duration of the cleanup. The cost savings at Umatilla were lower, with savings up to $600,000, but the
Umatilla cleanup is much less expensive and complex than the Blaine site.  As the complexity of the site
increased, more cost savings were obtained. These savings are substantially greater than the incremental cost of
applying mathematical transport optimization over a more traditional trial-and-error approach, which we estimate
to range from zero to $40,000. These costs do not include the cost of developing mathematical objective functions
and constraints, which we estimate to cost $5,000 to $15,000. The cost estimates also do not include the costs of
developing a transport simulation model, which would be needed regardless of whether trial-and-error or
optimization algorithms were used.

Prior to developing optimal solutions for each site, mathematical formulations need to be established. This was a
difficult and time-consuming process. However, this formulation process forces development of a concise and
quantifiable set of objectives and allows comparison of potential project objectives and constraints.  As such, the
effort is worthwhile whether or not mathematical optimization algorithms are ultimately applied.

Due to the specific needs of this demonstration project, the optimization formulations were fixed at the beginning
of the simulation period, and simulation period length was defined. However, normally the optimization modeler
would iterate with the installation to develop revised formulations as optimization proceeds, to incorporate new
knowledge and potentially revise formulations.  This project demonstrates that such iterations should be a
component of real-world applications.

This project also demonstrated that applying the transport optimization algorithms required expertise to reduce
computational time.  If a single optimization run were set up to solve the entire problem as formulated, with all
possible pumping rates and well locations in all potential management periods, the number of decision variables
would be much larger and the computational times associated with the optimization algorithms would be
prohibitive on today’s computers for these time-intensive applications (the model for the Blaine site, e.g., required
nearly two hours of computing for every run of the simulation model). Instead, the transport optimization teams
employed sequential solution approaches to reduce computational effort, in which some parts of the problem
were fixed while others were optimized.  In some cases, problems were solved one management period at a time.
In others, well locations were identified first, assuming steady-state pumping rates, followed by optimizing well
rates for those pre-determined well locations. The optimization teams also used approximate models such as
neural networks, which can be fit to the simulation model results and then used to replace the simulation models
within the optimization to reduce computing time.  The application of these optimization tools requires expertise
and professional insight.


